Dynamic Flammability Limits of Methane/air Premixed Flames with Mixture Composition Fluctuations

نویسنده

  • RAMANAN SANKARAN
چکیده

As a fundamental study in the application to direct-injection spark-ignition engines or gas turbines, in which mixture stratification and partial quenching are of serious concerns, unsteady premixed methane/ air flames subjected to time-varying composition fluctuations are investigated computationally. The code OPUS employs an unsteady opposed-flow combustion configuration, including detailed chemical kinetics, transport, and radiation models, using an adaptive time integration method for a stiff system of differentialalgebraic equations with a high index. The primary issue of the study is to establish the concept of the dynamic flammability limit, defined as the minimum equivalence ratio above which the unsteady flame can sustain combustion. For the weak and strong strain rate cases studied, it is observed that the dynamic flammability limit depends on the mean and frequency of the composition fluctuation. The parametric study demonstrated that the flammability limit of an unsteady premixed flame is further extended to a leaner condition as the frequency or mean equivalence ratio fluctuation increases. It is also found that, under all conditions, the mean equivalence ratio and the minimum flame temperature must be higher than those at the steady flammability limit to sustain combustion. It is further shown that the dynamic flammability limit is primarily determined by the instantaneous branching-termination balance at the reaction zone. The behavior of the flame response attenuation with increasing frequency is found to scale properly using the normalized frequency based on the imposed flow strain rate, which represents the characteristic time scale of the transport process within the flame.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Analysis on Dynamic Flammability Limits of Unsteady Premixed Methane/Air Flames

A computational study is performed to investigate the effects of mixture composition oscillations on a strained premixed methane/air flame. The problem is of practical relevance in direct-injection spark-ignition (DISI) engines and gas-turbines, in which premixed flames propagate through temporally and spatially stratified mixture field. The primary focus of the study is to identify the dynamic...

متن کامل

Effect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of stretched methane/air premixed flame in an opposed flow configuration. The problem is of interest as a potential application to gas turbines and spark-ignition engines, where it has been anticipated that addition of a small amount of hydrogen will extend the lean flammability...

متن کامل

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow

Motivated by the potential use of catalytic materials in micro-combustor application, the primary scope of this study is to investigate the lean extinction characteristics of premixed flames in the presence of catalytic reaction. In particular, the effects of mixture dilution on the lean flammability limit are examined by adopting a stagnation-point flow system with a methane/air mixture over a...

متن کامل

Burning Velocities and Flammability Limits of Premixed Methane/Air/Diluent Flames in Microgravity

Laminar burning velocities and flammability limits of premixed methane/air flames in the presence of various inert gases including helium, argon, nitrogen and carbon dioxide were investigated by combined use of microgravity experiments and computations. The experiments used a short-drop free-fall laboratory facility that can eliminate the effect of buoyancy on flames and therefore enable accura...

متن کامل

Numerical Investigation of Forced Ignition in Laminar Counterflow Non- Premixed Methane-air Flames

Simulations of forced ignition of non-premixed laminar counterflow flames are used to study the effect of strain rate on ignition success. A one dimensional calculation is performed, using detailed methane chemical kinetics and treating the spark as an instantaneous heat release in an inert mixing layer. Ignition success depends on the mixture composition at the spark location, resulting in lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003